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Microphone Pair Training for Robust Sound Source
Localization with Diverse Array Configurations

Inkyu An1, Guoyuan An2, Taeyoung Kim3, and Sung-eui Yoon2

Abstract—We present a novel sound source localization method
that leverages microphone pair training, designed to deliver
robust performance in various real-world environments. Existing
deep learning (DL)-based approaches face scalability issues when
dealing with various types of microphone arrays. To address
these issues, our approach has been structured into two training
steps: the first step focuses on microphone pair training, while
the second step is designed for array geometry-aware training.
The first training step enables our model to learn from multiple
datasets covering various real-world situations, allowing it to
robustly estimate the time difference of arrival (TDoA). Our
robust-TDoA model incorporates a Mel scale learnable filter
bank (MLFB) and a hierarchical frequency-to-time attention
network (HiFTA-net). This allows it to effectively learn from
various situations in multiple datasets, including those involving
simultaneous sources and various sound events. The second
training step enables our approach to estimate the direction of
arrival (DoA) of sound based on TDoA information computed by
our robust-TDoA model, which begins with parameters acquired
during the first training step. During this process, our approach
can be trained to accommodate geometry information of the
target microphone array, which can span diverse array types.
As a result, our method demonstrates robust performance across
two DoA estimation tasks using three different types of arrays.

Index Terms—Robot Audition, Localization

I. INTRODUCTION

SOUND source localization (SSL), also known as direction
of arrival (DoA) estimation, is a fundamental problem in

the field of robot audition [1]. Numerous studies have been
dedicated to solving this SSL problem by leveraging various
signal processing techniques, including MUSIC methods [2],
[3] and beamforming methods [4].

In real-world scenarios, robots encounter complex situa-
tions, including noise and simultaneous sound events, which
pose challenges for traditional signal processing methods. To
address these challenges, several deep learning (DL)-based
methods have been introduced. He et al. [5] introduced a
method for the localization of simultaneous speech sources
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using a multi-layer perceptron. Additionally, Wang et al. [6]
improved speech localization performance in noisy conditions
by creating a trainable mask to reduce noise impact.

Many studies have also focused on the task of sound
event localization and detection (SELD). Adavanne et al. [7]
proposed a convolutional recurrent neural network (CRNN) to
perform the SELD task with simultaneous sources. Schymura
et al. [8] introduced a self-attention-based network to enhance
the performance of the SELD task.

However, existing deep learning-based methods are typi-
cally tailored for specific types of microphone arrays. This
design choice can lead to issues when different types of mi-
crophone arrays are used. Datasets used for training and testing
must be acquired using a consistent type of microphone array.
Therefore, these methods often face challenges in obtaining a
sufficient amount of data for a specific array type. Moreover,
models trained with a specific type of microphone array may
not effectively adapt to other array types. We define these
challenges as scalability issues in existing DL-based methods.
Given the diversity of microphone arrays employed in robots,
there is an increasing demand for solutions to overcome these
scalability issues.

Several audio datasets have been released for SSL, including
TUT-CA [7], DCASE2021 [9], and SSLR [5]. However, their
combined usage is limited by scalability issues related to
the various microphone array types used during recording.
These datasets contain a wide range of situational audio data.
For instance, the TUT-CA dataset includes various sound
events recorded in an anechoic chamber, DCASE2021 captures
dynamic sources in real, reverberating indoor environments,
and SSLR collects human conversations in real environments
amidst noise interference. Therefore, the potential for improv-
ing SSL performance through the combined utilization of these
datasets is significant.

Main contribution. To address scalability issues associated
with different types of microphone arrays, we propose a two-
step training methodology. In the first step, we conduct micro-
phone pair training (Sec. II-A), allowing our model to access
multiple datasets collected by a range of microphone array
types for the time difference of arrival (TDoA) estimation.
Therefore, our model gains exposure to various situations
present in these datasets. Additionally, we develop a robust
TDoA model, which includes a Mel scale learnable filter
bank (MLFB) (Sec. II-A1) and a hierarchical frequency-to-
time attention network (HiFTA-net) (Sec. II-A2). This model
is explicitly designed to learn from a variety of situations
presented in multiple datasets.

Following the first step, our method performs the second
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Fig. 1. The overview of our two-step training pipeline, which includes microphone pair training (1) and array geometry-aware training (2). In first microphone
pair training (1), we employ our robust-TDoA model (c), which comprises a Mel scale learnable filter bank (MLFB) and a hierarchical frequency-to-time
attention network (HiFTA-net). This model is trained to predict time differences of arrival (TDoAs) for sound events using audio data from microphone
pairs. Microphone pair audios are extracted from various datasets (b), covering different scenarios (a), including simultaneous speech sources with noise,
simultaneous static sound events, and simultaneous moving sound events. After microphone pair training, our approach performs second array geometry-aware
training (2) to predict a direction of arrival (DoA). Our approach starts by extracting audio data from all microphone pairs within the target microphone array
(e). It then utilizes the robust-TDoA model (f) to compute TDoA information encoded in robust-TDoA features. It is worth noting that the parameters of
the robust-TDoA model (d) are initialized with those acquired during the first microphone pair training, ensuring robust TDoA computation for real-world
scenarios (a). Subsequently, a multi-layer perceptron (MLP) (g) is trained to predict DoAs using the robust-TDoA features, incoporating geometry information
of the target microphone array.

step, array geometry-aware training (Sec. II-B), for DoA
estimation (SSL). At this stage, our method can be trained to
consider the geometry information of the target microphone
array, accommodating diverse array types.

Thanks to our two-step training, our approach demonstrates
robust performance across various DoA estimation tasks, such
as the localization of simultaneous speech sources (Sec. III-A,
III-B, and III-D) and sound event localization and detection
(SELD, Sec. III-E). Furthermore, through our array geometry-
aware training, our approach is applicable to diverse types of
microphone arrays, including the 4-ch circular array in the
Pepper robot (Sec. III-A and III-B), the 8-ch planar array
(Sec. III-D), and the Respeaker Mic Array v2 from Seeed
(Sec. III-E). We also verified that our approach can work in
real-time (Sec. III-F).

II. ROBUST DOA ESTIMATION WITH MICROPHONE PAIR
TRAINING

Our training pipeline for robust direction of arrival (DoA)
estimation is depicted in Fig. 1. During first microphone pair
training, our method focuses on estimating the time difference
of arrival (TDoA), which contains valuable information for
DoA estimation [5]–[7], of sound events given two micro-
phone signals. In second array geometry-aware training, our
method leverages the estimated TDoA information to predict
DoAs by learning the geometry of the target array.

This two-step training offers several benefits. It eliminates
scalability issues related to microphone array types during the
first step. TDoA estimation involves calculating the time dif-
ference between two coherent signals; therefore, microphone
array types become irrelevant when our method estimates
TDoA during the first step. Microphone pair training can
utilize diverse datasets, detailed in Sec. I, collected with
various microphone array types, thereby providing exposure to

a wide range of real-world scenarios. After microphone pair
training, our method can be applied to various microphone
array types, leveraging array geometry-aware training, and it
consistently demonstrates robust performance.

A. Microphone Pair Training for TDoA estimation

Some TDoA features [6], [10], [11] exist based on gener-
alized cross correlation-phase transform (GCC-PHAT) [12].
However, existing TDoA features require improvement to
function effectively in real environments with simultaneous
sources and diverse sound events (see Sec. III-A, III-D, and
III-E). We propose a robust-TDoA model designed to address
challenges by learning from multiple datasets recorded using
diverse array types. The robust-TDoA model takes microphone
pair signals from multiple datasets and predicts TDoAs of
sound events. The robust-TDoA model comprises two compo-
nents: a Mel scale learnable filter bank (MLFB) for generating
advantageous audio features and a hierarchical frequency-to-
time attention network (HiFTA-net) for estimating TDoAs
from these MLFB-generated features.

1) Mel scale learnable filter bank (MLFB): In real envi-
ronments, there exist diverse types of sound like speech, alarm,
and dog bark, i.e., different sound events. Moreover, these
sound events can occur simultaneously. The robust-TDoA
model needs to be capable of distinguishing sound events
while maintaining phase information for estimating TDoAs,
even in cases of simultaneous sources. We first generate a
useful audio feature for managing sound events in this section,
then in Sec. II-A2, we estimate TDoAs while distinguishing
between these events.

The Mel-spectrogram [13] serves as a useful hand-crafted
feature for capturing different characteristics of various sound
events. By converting the frequency scale to the Mel frequency
scale, the Mel-spectrogram can show greater discriminative
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Fig. 2. An example of applying a Mel scale learnable filter bank (MLFB),
consisting of K learnable filters (LFs), as depicted in (a), to STFT signals
of two microphones, as illustrated in (b). Each LF consists of 4-ch learnable
parameters and has a unique frequency bandwidth, notably, the frequency
bandwidth of each LF becomes more narrow as the frequency decreases.
Each LF is utilized on the selectively cropped frequency signal present at the
t-th time bin within the STFT signals. As a result, the processed output from
the k-th LF subsequently becomes the k-th value of the MLFB output (c) at
the respective t-th time bin.

ability for low frequency and be advantageous in differentiat-
ing sound events, as many such events like speech, alarms, and
dog barks dominate the low-frequency range. Nonetheless, the
Mel-spectrogram is not suitable for computing TDoAs because
it neglects a phase spectrum of short time Fourier transform
(STFT) signals. A phase difference of two microphone signals
plays an key role in the TDoA estimation [11], [12], but the
Mel-spectrogram is computed only from a magnitude spectrum
of STFT signals.

We propose a Mel scale learnable filter bank (MLFB) that
generates effective audio features capable of both computing
TDoAs and distinguishing between sound events. Unlike the
Mel-spectrogram, our MLFB is designed to take into account
the phase difference of two microphone signals, thereby ac-
cepting real and imaginary parts of the STFT signals as input.
The MLFB is composed of K learnable filters (LFs), which
facilitate the conversion of the frequency scale into the Mel
frequency scale.

The process of applying MLFB to a pair of microphone
audio inputs is illustrated in Fig. 2. Our method begins by
applying the short-time Fourier transform (STFT) to the mi-
crophone pair audio, resulting in STFT signals which include
both the real and imaginary parts from the two microphones.
The K LFs are then applied to a frequency signal at each
time bin of the STFT signals. The process of filtering through
MLFB for each time bin of the STFT signals can be expressed
as:

st[k] = ReLU(Σ(Xt ⊙ LFk)), (1)

where st[k] represents the k-th value of the MLFB output at
the t-th time bin, ReLU is the rectified linear unit, Σ denotes
the function summing all elements, ⊙ is the element-wise
product, Xt is the cropped frequency signal at the t-th time
bin of the STFT signals, and LFk is the k-th LF. Our method
applies (1) across all time bins to produce the comprehensive
MLFB output.

To convert the frequency scale to the Mel frequency scale,
each LF is designed to possess different frequency band-
widths [14]. LFs for low frequencies have narrower band-

widths compared to those for high frequencies. As a result,
when each LF is applied to the cropped frequency signal Xt,
which has the same frequency bandwidth, the MLFB output
can be more discriminative for low frequencies.

Furthermore, each LF is designed with learnable parameters
having 4-channel. Each channel corresponds to real and imagi-
nary components of the STFT signals of two microphones. The
learnable parameters of each LF can be trained to consider
the phase difference between the two microphones during the
scale microphone pair training process. A ReLU function in
(1) is employed to facilitate efficient LF training.

Through the implementation of multiple MLFBs, our ap-
proach can generate N MLFB outputs, thereby increasing the
model’s learnable parameters and subsequently its ability to
handle diverse situations found in real-world environments.

2) Hierarchical frequency-to-time attention network: In
this section, we introduce a hierarchical frequency-to-time
attention network (HiFTA-net). This model is designed to
estimate time differences of arrival (TDoAs) between two mi-
crophones while simultaneously distinguishing different sound
events from N MLFB outputs.

Different sound events inherently carry unique frequency
and temporal characteristics. In an intuitive sense, each sound
event consists of sequential elements unfolding over time
(i.e., temporal characteristics), and these components exhibit
distinct frequency attributes. Consider, for instance, human
speech, which comprises a sequence of phonemes, or the
periodic pattern of footsteps caused by the alternating contact
of two feet with the ground. The temporal aspects, such as the
sequential arrangement of phonemes in speech or the rhythm
of footfalls, differ greatly. In addition, both phonemes and
the sounds generated by individual footsteps exhibit distinct
frequency attributes.

In an attempt to estimate TDoAs from a microphone pair
while distinguishing between sound events, our approach
strives to comprehend and leverage these temporal and fre-
quency characteristics inherent to sound events. This is par-
ticularly relevant in scenarios where multiple sound sources
exist simultaneously. Our hypothesis is that by considering
the unique frequency and temporal properties of each sound
source, our method can effectively estimate the multiple
TDoAs that originate from these simultaneous sound sources.

HiFTA-net operations are demonstrated in Fig. 3; we are
inspired by the image-based neural architecture [15] when
designing our HiFTA-net. Our method initially divides the
N MLFB outputs into T uniform time frames and seeks
to estimate the TDoA of each frame. The HiFTA-net hier-
archically learns both frequency and temporal characteristics
of sound events. The frequency-attention network (FA-net)
initially learns the frequency characteristics of each time
frame, followed by the temporal-attention network (TA-net)
learning temporal characteristics across the T time frames.

To learn the frequency characteristics of each time frame,
each frame of the N MLFB outputs is divided into
Q frequency patches. These patches are then transformed
into hidden features using a fully connected layer FC:
FC([p(t,1), · · · ,p(t,Q)]) → [h(t,1), · · · ,h(t,Q)], where p(t,q) is
the flattened q-th frequency patch on the t-th time frame and
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Fig. 3. An illustration of performing our HiFTA-net. Our method begins by
dividing the N -channel MLFB output into T time frames, as shown in (a).
Each time frame is further divided into Q frequency patches, as shown in (b).
The HiFTA-net is designed to hierarchically comprehend both the frequency
and temporal aspects inherent in the input, the MLFB output, derived from the
divided frequency patches. A frequency-attention network (FA-net), presented
in (c), initially learns the frequency characteristics within each time frame,
followed by a temporal-attention network (TA-net), presented in (d), grasping
the temporal properties spanning across all T time frames. Finally, from the
output of the TA-net, our method generates robust-TDoA features (e) and
calculates TDoA predictions (f) for sound events.

h(t,q) is the q-th hidden feature on the t-th time frame. These
hidden features are input into the FA-net, which learns the
relationships between hidden features of frequency patches,
representing frequency characteristics of various sound events:

[h′
(t,1), · · · ,h′

(t,Q)] = FA-net([h(t,1), · · · ,h(t,Q)] + ef ), (2)

where h′
(t,q) is the q-th FA-net output on the t-th time

frame and ef is the frequency positional embedding (e.g., the
sinusoidal signal [16]). FA-net is designed based on the self
attention mechanism [15].

The outputs of the FA-net include frequency characteristics
of each time frame. The temporal-attention network (TA-
net) uses these outputs to learn the temporal characteristics
across all time frames. The outputs of the FA-net at the
t-th time frames are converted to another hidden feature:
ft = FC(Concat([h′

(t,1), · · · ,h′
(t,Q)])), where FC is the fully

connected layer and Concat is the function concatenating all
elements. By repeating for all T time frames, our approach
obtains the T hidden features, [f1, · · · , fT ], which is used as
the TA-net input:

[f′1, · · · , f′T ] = TA-net([f1, · · · , fT ] + et), (3)

where f′t is the output of TA-net for the t-th time frame and et
is the temporal positional embedding similar to ef in (2). The
TA-net is also based on the self attention mechanism, similar
to the FA-net.

In order to accommodate more diverse scenarios in real
environments, such as an increase in the number of dis-
tinct sound events to be discerned, we expand the trainable
parameters of our HiFTA-net. This is achieved by stacking
multiple HiFTA-nets, providing the depth D to the network.

In this configuration, the output of the FA-net at the t-th time
frame ([h′

(t,1), · · · ,h′
(t,Q)], in (2)) serves as the input for the

subsequent FA-net at the same time frame. Furthermore, the
outputs of the TA-net ([f′1, · · · , f′T ], in (3)) are added to the
input of the subsequent TA-net, which is the hidden features
([f1, · · · , fT ]).

The final step involves estimating TDoAs from the outputs
of the last TA-net, which has the depth D and ideally should
encapsulate the temporal and frequency characteristics of the
input microphone pair audio:

r-tdoat =FC(f′t), (4)

[tdoa1
t , · · · , tdoaS

t ] =σ(FC(r-tdoat)), (5)

where r-tdoat is our robust-TDoA feature at the t-th time
frame, tdoas

t is the TDoA prediction of the s-th sound event
at the t-th time frame, and σ is the sigmoid activation function.
We compute the BCE loss with a TDoA label for training our
robust-TDoA model, which consists of the MLFB and HiFTA-
net. The TDoA label is computed from the direction of arrival
(DoA) labels provided by datasets, considering the positions
of microphone pairs.

B. Array geometry-aware training

In this section, our objective is to localize sound sources
by leveraging the estimated time difference of arrival (TDoA)
information from a target microphone array. This target mi-
crophone array can encompass various types, as long as it
satisfies the requirement that each direction of arrival (DoA)
corresponds to a specific combination of TDoAs [17]. We
can calculate DoAs based on the TDoAs from all microphone
pairs within the target microphone array, while considering the
array’s geometry. In our case, we acquire TDoA information
through the robust-TDoA model, as detailed in Sec.II-A.
Consequently, in the second array geometry-aware training,
as illustrated in Fig.1, our approach is trained to incorporate
the geometry information of the target microphone array to
estimate DoAs from TDoA information.

Initially, we extract audio from each microphone pair
within the target microphone array. Subsequently, we utilize
the robust-TDoA model to estimate TDoA information. The
robust-TDoA model is initialized with parameters acquired
during microphone pair training (Fig. II-A), and these pa-
rameters are shared across all microphone pairs. The TDoA
information is then encoded in the robust-TDoA features,
denoted as [r-tdoa1

t , · · · , r-tdoaPt ] at the t-th time frame given
P microphone pairs. These robust-TDOA features are inputted
into a multi-layer perceptron (MLP) aiming to predict the
DoA, DoAt:

doat = Φ(MLP(Concat([r-tdoa1
t , · · · , r-tdoaPt ]))), (6)

where Φ is the activation function, MLP consists of four fully
connected layers, and Concat is a function concatenating all
elements. MLP is trained to account for microphone positions,
i.e., array geometry information, during the array geometry-
aware training.

By modifying MLP and the activation function Φ, we
can reformat doat to match the desired DoA representation.
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Examples include 3-D DoA vectors (x, y, and z) for various
sound events in Sec.III-E and 2-D DoA angles (360 cells
corresponding to 360 degrees while ignoring the elevation)
for speech in Sec.III-A and III-D. For these examples, we
respectively use mean squared error and binary cross-entropy
as the loss functions.

III. RESULT AND DISCUSSION

In this section, we evaluate the effectiveness of our approach
and highlight its advantages. Firstly, we performed microphone
pair training, as elaborated in Sec.II-A, to train our robust-
time difference of arrival model (robust-TDoA model). This
model was trained using three datasets: SSLR, TUT-CA,
and DCASE2021, as introduced in Sec. I. These datasets
encompass challenging situations such as instances with si-
multaneous sources of various sound events. Consequently, our
approach, which operates based on this robust-TDoA model,
delivers substantial performance in various direction of arrival
(DoA) estimation tasks.

Additionally, we implemented an exisitng deep learning
(DL)-based TDoA estimation method, i.e., DeepGCC [10]
which was trained using the same three datasets. Our aim in
this comparison is to show the effectiveness of the structural
componenets of our robust-TDoA model in learning diverse
situations found within the aforementioned datasets.

Secondly, following microphone pair training, our approach
adapts to various types of microphone arrays for DoA es-
timation tasks through array geometry-aware training. These
tasks include the multiple speaker localization and detection
(MSLD), the localization of simultaneous speech sources, in
Sec. III-A, III-B, and III-D as well as sound event localization
and detection (SELD) in Sec.III-E. We compare our approach
with previous methods used in MSLD [5], [6] and SELD [7].
We then compare our approach with the existing DL-based
TDoA estimation method, DeepGCC [10], which also under-
went array geometry-aware training following microphone pair
training by replacing our robust-TDoA model to the DeepGCC
model in Fig. 1.

Given the diversity of microphone arrays in different robots,
adapting to various types of arrays is crucial. We have
demonstrated our approach by applying three distinct target
microphone arrays: the 4-ch circular array in the Pepper robot
(Sec. III-A and III-B), the 8-ch planar array (Sec. III-D), and
the Respeaker Mic Array v2 from Seeed (Sec. III-E).

Lastly, we validate the real-time functionality of our ap-
proach in Sec. III-F. We have included a demonstration video
of our approach in the multimedia materials.

The input microphone pair audio has 1 s length, comprising
10 time frames, each lasting 0.1 s, with 24 kHz sample rate.
The robot records audio for 1 s using the microphone array and
then utilizes our method to estimate DoAs. If the audio length
exceeds 1 s, the robot’s response becomes slow. We believe
that 1 s is not only appropriate for expecting a rapid response
from robots but also sufficient to capture adequate time and
frequency information. Other hyperparameters employed in
our robust-TDoA model were selected by referencing prior
DoA estimation methods [5], [9] and the image-based neural
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TABLE I
THE ACCURACY OF MSLD WITH EXISTING DATASET.

Overall Source=1 Source=2
MAE

(↓)
ACC
(↑)

MAE
(↓)

ACC
(↑)

MAE
(↓)

ACC
(↑)

MLP-GCC 9.65◦ 81.82% 9.46◦ 86.35% 10.16◦ 69.74%
GCC-PHAT
-SM 7.41◦ 83.02% 6.88◦ 88.08% 8.84◦ 69.59%

DeepGCC 7.16◦ 84.63% 6.75◦ 89.12% 8.25◦ 72.66%
HiFTA (ours) 3.20◦ 93.95% 3.11◦ 95.19% 3.42◦ 90.64%
HiFTA+MLFB
(ours) 2.84◦ 94.94% 2.81◦ 95.91% 2.92◦ 92.34%

HiFTA+MLFB
w/o 2nd train
(ours)

12.01◦ 81.63% 7.44◦ 88.95% 24.19◦ 62.13%

architecture [15]. For further details, please refer to the GitHub
project (github.com/InkyuAn/MicPairTrain).

A. MSLD with existing dataset

Suppose the target microphone array for the multiple
speaker localization and detection (MSLD) task is the 4-
ch circular microphone array within the Pepper robot. Our
approach then performs array geometry-aware training over 10
epochs using the SSLR dataset [5], collected using the same 4-
ch circular microphone array. Other datasets like DCASE2021
and TUT-CA cannot be used in conjunction because they were
recorded using different array types.

We compare our approach to previous MSLD methods,
including MLP-GCC [5] and GCC-PHAT-SM [6], as well
as the existing DL-based TDoA method, DeepGCC [10].
Additionally, we conduct an ablation study to highlight the
advantages of the components in our method. Specifically,
HiFTA+MLFB incorporates all components, while HiFTA
utilizes only the HiFTA-net without MLFB. Moreover, we
test our method in a different version, HiFTA+MLFB w/o 2nd

train, to show the necessity of second array geometry-aware
training. In this variant, HiFTA+MLFB w/o 2nd train predicts
DoAs solely using TDoA prediction computed by our robust-
TDoA model, which was trained during first microphone pair
training without second array geometry-aware training. We
implement this version by referring to the beamforming-based
method [18].

We apply evaluation metrics previously suggested in the
work [5] for the MSLD task, covering scenarios with known
and unknown numbers of sources. The results of the first
condition, i.e., the results with the known number of sources,
are shown in Table. I. The mean absolute error (MAE) is the
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TABLE II
THE ACCURACY BY INCREASING THE SIZE OF THE TRAINING DATASET.

Training datasets
for our robust
-TDoA model

Overall ξ = 0.45
MAE
(↓)

ACC
(↑)

Precision
(↑)

Recall
(↑)

SSLR 3.53◦ 91.27% 85.51% 86.45%
SSLR, DCASE2021 2.97◦ 93.63% 87.84% 88.94%
SSLR, DCASE2021
TUT-CA 2.84◦ 94.94% 90.38% 89.95%

average azimuth estimation error, and the accuracy (ACC) de-
notes the percentage of correct azimuth estimates. We measure
the results of both metrics under three conditions based on the
number of overlapping sources: Source=1 (a single source),
Source=2 (two simultaneous sources), and Overall (averaging
Source=1 and Source=2)

Our approach, HiFTA+MLFB, outperforms previous meth-
ods and our different versions across all situations and both
metrics. Comparing HiFTA+MLFB with MLP-GCC and GCC-
PHAT-SM, our two-step training strategy successfully esti-
mates DoAs by learning from multiple datasets during the
first training step. DeepGCC, performing the proposed two-
step training, also shows better performance than MLP-GCC
and GCC-PHAT-SM, thus we are convinced of the benefit of
our two-step training strategy.

Comparing HiFTA+MLFB to DeepGCC, we show that
our robust-TDoA model, comprising MLFB and HiFTA-net,
excels at learning diverse situations from multiple datasets
in the first step. Conversely, DeepGCC, which employs a
distinct deep learning (DL) architecture based on a CNN-based
encoder-decoder, underperforms in this aspect. Furthermore,
both componenets, MLFB and HiFTA-net, in our robust-TDoA
model perform well for estimating TDoAs, as evidenced by the
superior performance of HiFTA+MLFB compared to HiFTA.

Comparing HiFTA+MLFB to HiFTA+MLFB w/o 2nd train,
we confirm the necessity of second array geometry-aware
training for more accurate DoA estimation. The performance
of HiFTA+MLFB w/o 2nd train deteriorates, especially in
Source=2, due to the low resolution of the TDoA predictions
at low sampling rates (e.g., 24 kHz), which often place the
TDoAs of simultaneous sources in the same delay bin. How-
ever, HiFTA+MLFB incorporates the robust-TDoA features,
which are free from the resolution of the TDoA prediction,
during the array geometry-aware training. This allows it to
overcome this issue.

The results of the second type of metrics, i.e., the results
with an unknown number of sources, are shown in Fig. 4. The
precision vs. recall curve is proposed by varying the prediction
threshold ξ [5] to verify the ability of detection as well as
localization; the curve showing better results is closer to 1
value in both axes corresponding to precision and recall. Our
approach, HiFTA+MLFB, shows the best performance among
the reported results.

B. The ablation study with varying sizes of datasets

Our approach is evaluated by expanding the training datasets
during the microphone pair training process. This experiment

Speaker 
position

Mic. array 
position

Robot w/ 
mic. array

Robot w/ 
speaker

7 m

7 m

Fig. 5. The experiment for recording real RIRs in the left figure and the
positions of robots equipped with the speaker (blue dots) and the microphone
array (a red dot), respectively, in the right figure. The positions of robots are
obtained using a SLAM technique [19] with 2D LiDAR and IMU sensors.

aims to ascertain the impact of learning from an extensive
training dataset. We assess our method using various dataset
sizes, incrementally adding the DCASE2021 and TUT-CA
datasets to the SSLR dataset. This results in three versions:
SSLR, (SSLR + DCASE2021), and (SSLR + DCASE2021 +
TUT-CA).

We utilize the MAE and ACC metrics of the Overall
case, as well as the precision and recall values discussed
in Sec. III-A. The precision and recall values have a trade-
off relation according to the prediction threshold ξ. For our
approach to work on the fly in a real-time, ξ needs to be
chosen with a fixed value. We choose the proper value of ξ,
which makes both precision and recall have large values. In
Fig. 4, we assume that both precision and recall can be large
at the intersection point between the precision vs. recall curve
and the symmetric line, i.e., the dotted black line; thus, we
utilize ξ = 0.45, i.e., the red point.

The results are shown in Table. II. The performance of
our method improves across all metrics when the size of the
training dataset is increased. These findings suggest that a
large dataset is advantageous in our microphone pair training,
implying that our robust-TDoA model, comprised of MLFB
and the HiFTA-net, has sufficient capacity to learn from
multiple datasets. Moreover, even in the case of just utilizing
the SSLR dataset during the microphone pair training stage,
the DoA estimation performance is bettern than the prior
works, MLP-GCC and GCC-PHAT-SM, in Table. I.

C. Synthetic datasets for training and evaluating processes.

Our method is designed to operate with diverse types of
microphone arrays mounted on various robots, made possible
through our array geometry-aware training. Notably, when the
dataset of the target microphone array for array geometry-
aware training is not available, our method can effectively
leverage a synthetic dataset generated by sound simulators.
This involves initially generating room impulse responses
(RIRs) using a sound simulator, then creating a synthetic
dataset by convoluting RIRs with dry signals. We exclusively
utilize dry speech signals for the MSLD task and all dry signals
for the SELD task.

To generate synthetic datasets with two target microphone
arrays, i.e., the ReSpeaker Mic Array v2 and 8-ch planar
microphone array, we employ the Habitat 2.0 sound simu-
lator [20] and a NIGENS general sound events database [21],
which contains dry signals of fourteen sound events. The
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TABLE III
THE ACCURACY OF MSLD WITH SYNTHETIC DATASET OF THE 8-CH

PLANAR ARRAY USING THE SOUND SIMULATOR.

Overall Source=1 Source=2
MAE

(↓)
ACC
(↑)

MAE
(↓)

ACC
(↑)

MAE
(↓)

ACC
(↑)

MUSIC 11.68◦ 78.02% 6.74◦ 79.61% 13.99◦ 77.27%
MLP-GCC 18.49◦ 63.08% 17.87◦ 64.95% 18.80◦ 62.14%
GCC-PHAT-SM 15.19◦ 62.72% 14.57◦ 65.70% 15.49◦ 61.22%
DeepGCC 11.02◦ 68.42% 9.33◦ 71.68% 11.86◦ 77.27%
Ours 6.19◦ 88.67% 4.94◦ 91.5% 6.82◦ 87.26%

sound simulator can operate in a 3-D reconstructed environ-
ment using an iPhone equipped with a camera and LiDAR
sensors, replicating a real environment of 7m width, 7m depth,
and 3m height. The synthetic dataset includes 5 hours of multi-
channel audio with up to two simultaneous sources.

In addition, we record real RIRs with robots in an ac-
tual environment to verify our approach following the array
geometry-aware training process using synthetic datasets from
the sound simulator. We equip two mobile robots with each
microphone array and a speaker, then record RIRs at 78
locations using sine sweeps [22], as illustrated in Fig. 5. We
generate a 2-hour evaluation dataset using real RIRs, thereby
making the evaluation dataset more realistic than the synthetic
dataset from the sound simulator.

To mimic the noisy real-world conditions, we incorporate
additional white noise; both our synthetic dataset, created
using a sound simulator, and our evaluation dataset, utiliz-
ing real RIRs, have average signal-to-noise ratios (SNR) of
10 dB and 18 dB, respectively. Furthermore, the reverberation
time (RT60s), which signifies the reverberation factor in our
experimental environments, is 0.45 seconds for the synthetic
dataset and 0.4 seconds for the evaluation dataset.

D. MSLD with synthetic dataset

When targeting the use of an 8-ch planar microphone array
for the Multiple Speaker Localization and Detection (MSLD)
task, we face a challenge: there are no published datasets
recorded using this array. To address this, we employ the syn-
thetic and evaluation datasets, both generated using the 8-ch
planar microphone array (Sec. III-C) for the array geometry-
aware training process. The DL-based TDoA method, Deep-
GCC, also undergoes array geometry-aware training using the
same synthetic and evaluation datasets. The prior DL-based
methods, MLP-GCC [5] and GCC-PHAT-SM [6], are modified
to access the 8-ch audio of the synthetic dataset.

Additionally, we compare our approach with MUSIC [3],
a signal processing-based technique. As MUSIC can function
without a training process, it can easily be used when a training
dataset is unavailable. To apply MUSIC, we must be aware of
the number of active sources at each frame; we run MUSIC
with the actual number of active sources, gleaned from the
DoA labels. Therefore, the results of MUSIC in this paper can
be seen as the optimal performance achievable of MUSIC. We
use evaluation metrics, namely MAE and ACC, for the three
situations: Source=1, Source=2, and Overall, as described in
Sec. III-A.

TABLE IV
THE ACCURACY OF SELD WITH SYNTHETIC DATASET OF RESPEAKER V2

USING THE SOUND SIMULATOR.

SED metrics DoA metrics Overall
ER
(↓)

F-score
(↑)

DOA
error (↓)

Frame
recall (↑)

SELD
score (↓)

SELDnet 0.67 47.92 28.77 66.21 0.42
DeeGCC 0.89 18.88 18.57 19.18 0.65
Ours 0.45 69.79 11.90 73.43 0.27

The evaluation results are depicted in Table. III. Even
though the sound simulator can generate a realistic synthetic
dataset, it does not fully replicate real-world recorded data.
Due to scalability issues related to microphone array types,
prior DL-based methods, MLP-GCC and GCC-PHAT-SM, can
only use the synthetic dataset for model training, resulting in
suboptimal performances. The performance of these methods
are inferior to DeepGCC, which employs the proposed two-
step training, as well as MUSIC, the signal processing-based
method. In contrast, our method exhibits superior performance
by learning from multiple real datasets during the first micro-
phone pair training step. Even when compared to DeepGCC,
which was also trained from multiple real datasets during the
first training step, our approach consistently outperforms it.
Thus, our method with the robust-TDoA model demonstrates
its effectiveness in learning realistic scenarios from diverse
datasets.

E. SELD with synthetic dataset
When the target microphone array is the 4-ch Respeaker

Mic Array v2, for which no published dataset exists, we
use synthetic and evaluation datasets (Sec.III-C) for array
geometry-aware training and performance evaluation. We also
extend our approach to the Sound Event Localization and
Detection (SELD) task, which requires differentiating sound
events and is a different DoA estimation task than the exper-
iments in Sec.III-A, III-B, and III-D.

This task demands the differentiation of sound events,
making traditional signal processing-based methods like MU-
SIC [3] unsuitable. We compare our approach with a prior
SELD method [7], which employs the GCC-PHAT feature and
the Mel spectrogram within the CRNN model. This method is
retrained using the synthetic dataset from the 4-ch Respeaker
Mic Array v2 due to the discrepancy in the microphone array
types used in its study [7] and our target microphone array.
Scalability issues associated with the microphone array types
prevent this method from utilizing other datasets, such as
SSLR, DCASE2021, and TUT-CA, simultaneously.

For evaluation, we use metrics proposed in previous SELD
work [7], consisting of five metrics: ER, F-score, DoA error,
Frame recall, and SELD score. The ER and F-score are used
to evaluate sound event detection (SED), whereas DoA error
and Frame recall measure the performance of DoA estimation.
The SELD score represents the overall performance by aver-
aging the other four metrics. Detailed information about these
metrics is available in [7].

As shown in Table. IV, our approach outperforms the prior
works in all metrics, demonstrating its applicability to different



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2023

1 3 5 7 9
0

0.04

0.08

0.12

0.16

Depth of HiFTA-net

T
im

e

0.2

0.24

0.28

0.32

0.36

S
E

L
D

 score (↓)

SELD 
score

Cal. time 
on CPU

Cal. time 
on GPU

Fig. 6. The calculation times on CPU and GPU and the SELD scores of the
SELD task by increasing the depth of our HiFTA-net.

SSL tasks with high performance, thanks to microphone pair
training from multiple datasets. Conversely, DeepGCC was
not designed to differentiate between different sound events.
While DeepGCC also utilizes microphone pair training, its
performance is unsatisfactory due to its inability to distinguish
between different sound events.

F. Real-time computation verification

So far, the results and analysis confirm the applicability of
our approach to various microphone array types and diverse
tasks. In this section, we aim to validate the feasibility of
our approach for real-time application with actual robots. The
key factor influencing computation time is the depth D of our
HiFTA-net (Sec. II-A2). We tested our work in the SELD task
with Respeaker Mic Array v2 in Sec. III-E by incrementally
increasing the depth D from 1 to 9 in Fig. 6.

Our approach is computed in a laptop computer with Intel
i7-11800H CPU and NVIDIA GeForce RTX 3070 Laptop
GPU. However, even at maximum depth of 9, the computation
time is approximately 0.15 s, validating that our approach can
operate in real-time. Furthermore, we observe that the SELD
score reaches saturation beyond a depth of 5. Therefore, in
all our experiments, we set our model to have a depth of 5.
We demonstrate the real-world applicability of our method
with real robots by implementing it in an SSL application,
for example, directing the robot to face the speech sources.
Demonstration videos of these SSL applications can be found
in our multimedia attachment.

IV. CONCLUSION

We have demonstrated that our approach is capable of robust
DoA estimation across two SSL tasks using various micro-
phone array types, thanks to our microphone pair training.
We were unable to conduct detailed experiments analyzing
the accuracy of DoA estimation for varying distances among
simultaneous sources with similar frequencies. This is an area
we plan to explore in future studies. In this paper, we focused
on evaluating the performance of the robust-TDoA model for
DoA estimation. Nevertheless, a more comprehensive analysis
is needed, including an examination of the relationship be-
tween TDoA and DoA estimation performance. We anticipate
that our method has the potential to handle indirect sounds,
such as reflections and diffractions, by integrating it with
ray tracing-based SSL methods [23]. To make our proposed
method suitable for complex environments with diverse ob-
jects, we plan to extend it to accommodate a larger number of
sound sources, exceeding three. Additionally, we believe that

our method can be adapted to address open-world problems,
including handling unseen sounds, through techniques such as
model generalization, domain adaptation, or online learning.
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